ANONYMIZING CLASSIFICATION DATA FOR PRIVACY PRESERVATION PDF

PDF | Classification of data with privacy preservation is a fundamental problem in privacy preserving data mining. The privacy goal requires. Classification is a fundamental problem in data analysis. Training a classifier requires accessing a large collection of data. Releasing. Classification of data with privacy preservation is a fundamental One way to achieve both is to anonymize the dataset that contains the.

Author: Kakree Nill
Country: Finland
Language: English (Spanish)
Genre: Relationship
Published (Last): 7 February 2013
Pages: 405
PDF File Size: 6.41 Mb
ePub File Size: 6.82 Mb
ISBN: 456-6-42863-822-7
Downloads: 37213
Price: Free* [*Free Regsitration Required]
Uploader: Mokus

Anonymizing Classification Data for Privacy Preservation – Semantic Scholar

Skip to search form Skip to main content. Fung and Ke Wang and Philip S. FungKe WangPhilip S. Classification is a fundamental problem in data analysis.

Anonymizing classification data for privacy preservation

Training a classifier requires accessing a large collection of data. Releasing person-specific data, such as customer data or patient records, may pose a threat to an individual’s privacy. This paper has highly influenced 20 other papers. This paper has citations.

  2008 HONDA CIVIC SEDAN OWNERS MANUAL PDF

From This Paper Topics from this paper. Topics Discussed in This Paper. Data anonymization Privacy Distortion.

Account Suspended

Real life Statistical classification Requirement. Citations Publications citing this paper. Showing of extracted citations. Enhanced anonymization algorithm to preserve confidentiality of data in public cloud Amalraj IrudayasamyArockiam Lawrence International Conference on Information Society…. Citation Statistics Citations 0 20 40 ’09 ’12 pdeservation ‘ Semantic Scholar estimates that this publication has citations based on the available data.

See our FAQ for additional information.

References Publications referenced by this paper. Showing of 3 references.

Transforming data to satisfy privacy constraints Vijay S. Anonymizing Classification Data for Privacy Preservation.

Top-down specialization for information and privacy preservation Benjamin C. Yu 21st International Conference on Data Engineering…. By clicking accept or continuing to use the site, you agree to the terms outlined in our Privacy PolicyTerms of Serviceand Dataset License.